

Management Procedure 2592

Revision: A

Date Issued: September 18, 2009

Date Revised:

Calibration Procedure

Coated Metal Thickness Standards

Table of Contents

1	Introduction and UUC Performance Requirements	2
	Table 1-1 Measurement Ranges	2
2		
	Table 2-1 UUC Accuracy Requirements and Description	
	Table 2-2 Minimum Use Specification	
	Table 2-3 Actual Equipment Specification	
	Table 2-4 Calibration Environmental and Warm Up Requirements	
3	Preliminary Operations	
4	Calibration Process	
5	Performance Requirements	5
	Table 5-1 Performance Requirements for New Coated Metal Thickness Standards	
	Table 5-2 Performance Requirements for Recertified Coated Metal Thickness Standards.	
	Table 5-3 Calibration Data for Coated Metal Thickness Standards	
M	anagement Procedure Change Notice	7

- 1 Introduction and UUC Performance Requirements
- 1.1 This procedure describes the calibration of the Coated Metal Thickness Standards with the following ranges:

Table 1-1 Measurement Ranges

Type	Measurement Range
Epoxy Coated Steel	15 – 1500 microns
	(0.6 - 60 mils)
Epoxy Coated Aluminum	75 – 1500 microns
	(3 - 60 mils)

- 1.2 The unit being calibrated will be referred to as the UUC (Unit-Under-Calibration).
- 2 Measurement Standards and Support Equipment Performance Requirements
- 2.1 The UUC accuracy requirements are based upon the specification of the most accurate DeFelsko product that the UUC is recommended for use on and the test uncertainty ratio applied.
- 2.2 The test uncertainty ratio applied in this calibration procedure is 4:1 unless otherwise stated.
- 2.3 Minimum-Use-Specifications are the minimum test equipment specifications required to meet all the UUC accuracy requirements.

Table 2-1 UUC Accuracy Requirements and Description

UUC Function Range		Accuracy	Test Method
	15 – 75 microns (0.6 – 3 mils)	± 0.25 microns (± 0.010 mils)	
Epoxy Coated Steel	>75 – 250 microns (>3 – 10 mils)	± 1.13 microns (± 0.044 mils)	Height Gage
	>250 microns (>10 mils)	± 4.25 microns (± 0.167 mils)	
	75 – 100 microns (3 – 4 mils)	± 0.31 microns (± 0.012 mils)	
Epoxy Coated Aluminum	>100 – 250 microns (> 4 – 10 mils)	<u>+</u> 1.10 microns (<u>+</u> 0.044 mils)	Height Gage
	>250 microns (>10 mils)	± 4.25 microns (± 0.167 mils)	

Table 2-2 Minimum Use Specification

Parameter	Range	Accuracy
Height	1500 um	<u>+</u> 0.25um
	60 mil	<u>+</u> 0.010 mil

Table 2-3 Actual Equipment Specification

Equipment Generic Name	Range	Accuracy	Manufacturer/Model #'s Applicable
Height Gage	25 mm 0.984 inch	$\pm 0.10 \text{ microns*}$ $\pm 0.004 \text{ mils}$	Heidenhain CT2501 with ND287 display

^{*(+/- 0.03}um with linear error compensation by the ND287)

Caution: The instructions in this Calibration Procedure relate specifically to the equipment and conditions listed in this section. If other equipment is substituted, the information and instructions must be interpreted accordingly.

- 2.4 Examination of the measurement system uncertainty
- 2.4.1 The first source of uncertainty considered is the change in thickness of the epoxy due to temperature variation. The thermal coefficient of the epoxy is 0.07 microns /(mm °C) and the thickest epoxy coating is 1.5mm so worst case change is 0.07 * 1.5 = 0.105 microns/°C. The temperature of the laboratory is controlled to +/- 1 °C so uncertainty is 0.105 * 1 = 0.105 microns. Temperature change of the metal plate is not considered because the height gage is zeroed to the top of the metal surface prior to taking measurements.
- 2.4.2 The next source of uncertainty is from the variation in the surface of the plate underneath the epoxy. The surface variation is +/- 0.42 microns over the measurement range.
- 2.4.3 The uncertainty of the height gage as stated above is \pm 0.03 microns.
- 2.4.4 The combined uncertainty of the measurement system is calculated using the sum of squares method as follows:

```
= ((\text{height gage})^2 + (\text{temp change})^2 + (\text{plate variation})^2)^{0.5}
= (0.03^2 + 0.105^2 + 0.42^2)^{0.5}
= 0.43 microns
```

- 2.5 The steel plate with a 15 micron coating has a test uncertainty ratio of 2.4:1 when used with the PosiTest G or GM.
- 2.6 The steel plate with a 75 micron coating has a test uncertainty ratio of 2.9:1 when used with the PosiTector F0S, F45S or F90S products
- 2.7 The aluminum plate with a 75 micron coating has a test uncertainty ratio of 2.9:1 when using the PosiTector 6000 NAS, N0S, N45S or N90S products.

Table 2-4 Calibration Environmental and Warm Up Requirements

Measurement Standards & Support Equipment Environmental Requirements:	Temperature: 24 ± 1° C. Relative Humidity: Less than 95%
Measurement Standards & Support Equipment Warm-up and Stabilization Requirements:	15 minutes

3 Preliminary Operations

Note: Review the entire document before starting the calibration process.

- 3.1 Make sure the process monitoring measurement has been performed per MP5044 before calibrating any standards.
- 3.2 Inspect the standard for cosmetic defects on the epoxy surface. Reject any parts that have surface defects.
- 3.3 Inspect the bottom surface of the standard. Reject any parts that have burrs or defects that will prevent the plate from sitting flat.
- 3.4 Using a Q-tip and alcohol clean the bottom and top surfaces of the standard
- 3.5 For recertified product record the serial number on the bottom of the plate with a marker, then remove the serial number label and clean any remaining adhesive from the standard.

4 Calibration Process

Note: Whenever a test requirement is not met as indicated in table 5-1 or 5-2, verify the results of the test and take corrective action before proceeding.

- 4.1 Place the standard on the vacuum plate and turn on the vacuum pump.
- 4.2 Take a height reading on the uncoated perimeter of the plate as close to the epoxy as possible. Set this as the reference point by pressing "Reset" on the ND 287 display.
- 4.3 Take three additional readings as close to the epoxy as possible at equal intervals around the uncoated perimeter of the plate.
- 4.4 Verify the range of the readings is less than or equal to 2.54 microns. If the readings exceed this verify the measurement surfaces are clean and repeat steps 4.2-4.3. *Note:* The specification of 2.54 microns is based on the parallelism of the plate over 1.5".
- 4.5 Determine the midpoint of the readings. Set this as the reference point by lowering the measurement probe to the uncoated surface then press "Reset" on the ND 287 display.
- 4.6 Take three readings around the perimeter and verify the range is centered.

- 4.7 For new product record the target reference thickness in table 5-3. For recertification of an existing standard record the thickness in microns from the UUC label or certificate.
- 4.8 Slide the standard so the epoxy is centered under the measurement probe.
- 4.9 Lower the probe and let the reading settle for 1 minute before recording the result in table 5-3.
- 4.10 Move the plate approximately 0.1" and take another reading.
- 4.11 Repeat steps 4.9 and 4.10 to get a total of three readings, all three readings must be within 0.1" of each other on the plate.
- 4.12 Verify the range of the readings is less than or equal to 0.25 microns. For new product verify the average reading is within the specification listed in table 5-1. For recertified product verify the average reading is within the specification listed in table 5-2.

 Note: The range of 0.25 microns is based on the parallelism of the epoxy over 0.1".
- 4.13 Attach a serial number label to the standard.

5 Performance Requirements

Note: The technician will collect the data needed to complete columns A through D of table 5-3. The technician shall then calculate the values for column E & F as indicated in the procedure and record all information in the table. Do not write in this procedure.

Table 5-1 Performance Requirements for New Coated Metal Thickness Standards

Target Thickness	Average Target Thickness Tolerance	Range Tolerance
(microns)	(microns)	(microns)
15 – 50	<u>+</u> 4	0.25
>50 - 100	<u>+</u> 5	0.25
>100 - 200	<u>+</u> 10	0.25
> 200 - 1500	<u>+</u> 20	0.25

Table 5-2 Performance Requirements for <u>Recertified</u> Coated Metal Thickness Standards

Reference Thickness	Average Thickness Tolerance	Range Tolerance
(microns)	(microns)	(microns)
15-1500	<u>+</u> 0.43	0.25

Table 5-3 Calibration Data for Coated Metal Thickness Standards

Standard Thickness	Measurement 1	Measurement 2	Measurement 3	Average	Range
(microns)	(microns)	(microns)	(microns)	(microns)	(microns)
A	В	С	D	Е	F

Management Procedure Change Notice

Procedure Number: MP 2592 Revision Level: A

Date of Change: September 18, 2009

Title: Calibration Procedure for Coated Metal Thickness Standards

Reason for Change: New Product		
Description of Change: New Procedure		

I confirm I have read and understand the procedure and the change described above.

Printed Name	Signature	Date

Management Form 0010.02-05/1998